Facebook Google Plus Twitter LinkedIn YouTube RSS Menu Search Resource - BlogResource - WebinarResource - ReportResource - Eventicons_066 icons_067icons_068icons_069icons_070

Tenable 部落格

訂閱

New in Nessus: Elliptic Curve Cryptography with SSH

Cryptography is like finding and patching system vulnerabilities. Both are a race. In the former, the race is between mathematicians finding efficient, hard-to-reverse computations and opposing mathematicians solving hard numerical problems to defeat them. In the latter, the race is between IT and malicious actors who may find the vulnerabilities first to exploit them. The race in encryption is fueled by the exponential increase in computing power outlined by Moore’s law, constantly driving the algorithms we use toward obsolescence.

For a long time, the golden standard in strong cryptography was based on schemes using the result of multiplying two prime numbers.

Breaking the encryption requires finding two prime numbers that when multiplied together result in the original number, also called the integer factors of the large number. In 1985, Neal Koblitz and Victor Miller separately invented cryptography based on the difficulty of finding the discrete logarithm of a random elliptic curve.

This relatively new approach has the advantage of faster computation than integer factorization. It also provides equivalent security using smaller keys.

The result of Koblitz and Miller’s work is called elliptic curve cryptography (ECC). Numerical improvements in integer factorization like the Number Field Sieve have put traditional RSA-style algorithms at risk with even relatively large key sizes and make the faster computation and smaller key sizes of elliptic curve cryptography an attractive alternative.

If a mathematical technique can feasibly factor integers or find the discrete logarithm of an elliptic curve, then it can be used to reveal private keys and break the cryptography. Looking into the future, quantum computing puts ECC at a higher risk than RSA due to Shor’s algorithm. Shor’s algorithm is a theoretical quantum computing technique for efficiently computing discrete logarithms. To use our race analogy, the cars are getting superchargers. But, in the meantime, ECC is a more secure approach than RSA.

Tenable has just added support for the use of ECC algorithms in SSH for credentialed scans. It’s another tool to help customers stay ahead in the race.

New algorithms

The addition of elliptic curve adds three new algorithms for Diffie-Hellman key exchange, bringing the total to six.

Original DH Algorithms

Current DH Algorithms

  • diffie-hellman-group-exchange-sha256
  • diffie-hellman-group-exchange-sha1
  • diffie-hellman-group14-sha1
  • diffie-hellman-group-exchange-sha256
  • diffie-hellman-group-exchange-sha1
  • diffie-hellman-group14-sha1
  • ecdh-sha2-nistp521
  • ecdh-sha2-nistp384
  • ecdh-sha2-nistp256


Six new signing algorithms have also been added, bringing the total to thirteen.

Original Signing Algorithms

Current Signing Algorithms


Asymmetric cryptography (e.g., RSA, DSS or ECC) generally serves three roles in SSH:

  • Key exchange
  • Authenticating clients to hosts
  • Authenticating hosts to clients

Key exchange use can be broken down into encrypting the process of generating a shared secret (in this case, Diffie-Hellman) and the process of cryptographically validating the integrity of the key exchange messages. Getting Nessus® to use the new algorithms for these processes just means configuring the SSH servers on the scan targets to enable them, and configuring the corresponding credentials in the scan policy.

Scanning with ECC

Using the new algorithms for authentication requires reconfiguring the SSH credential configuration in your scan policy, so I will briefly touch on it here.

Client authentication

Nessus supports two forms of client authentication using cryptographic keys:

  • The first is public key authentication, where a key pair is generated for each scanner and the public key for each pair is sent to the SSH servers.
  • The second is certificate authentication (CA), which follows the same idea, but makes it easier to manage the server side by having each scanner’s public key cryptographically signed by a certificate authority key or CA. The advantage is that a server only has to be configured to trust the CA to authenticate any client possessing a certificate signed by that CA.

To use public key authentication, simply add the scanner’s own private key to the SSH credentials. The private key contains a copy of the public key, and only the public key will ever be sent across the network for authentication. Nessus uses the private key to cryptographically sign the authentication messages in a way that an SSH server can use to verify that the message wasn’t tampered with in transit. The credential configuration then looks like this:

To use the new credential authentication method, create a trusted CA key pair for your scan targets. Then, sign the public key of your scanner’s key pair with the CA. Using OpenSSH, the command might look something like:

ssh-keygen -s ca_user_key_ecdsa_521 -n user1,user2,user3 -I a_certificate_name ./ssh_user_ecdsa_521.pub

This will produce a certificate named “ssh_user_ecdsa_521-cred.pub”. Your SSH credential will now require both the certificate and scanner’s private key. See below:

Host authentication

In addition, Nessus can use asymmetric cryptography to authenticate SSH servers. This is also called known host verification. It means Nessus will verify the identity of an SSH server. Here, the roles are reversed. Key pairs are generated on the scan targets, with Nessus configured to recognize them using a “known hosts” file. The public key of each scan target is placed in the “known hosts” file on a separate line. The file is uploaded as a part of the SSH credential global settings. Here’s an example:

your-host.your.domain.com ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAHR4cqH8yZbXVOSPSdOBUhIkELzANlgWOkNcdWZrRq95lglrf1ILe5Q0jukTKgjt413ie0TTKsTYG1nwaFJxKdRqAFw1NAGJxz3eVaf/6SN3kadNtcyPIPy5SbCF++G6iqhN1TuXenoXjwspCn3yWdiXF5rDoR5dDCLSMjJgH9tQaFanQ==

your-host2.your.domain.com ecdsa-sha2-nistp384 AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBP20zV8o3Ui4xSM0+3R/VtozwyzJXeurOirgvK3jWifV3/Re9XU/ZUeSeZBgDBdsvSQ+ym+At6CNU5o2Q9jUhHVSYo5tzYrS/pvD2uDykvy9M2oGG9XdxvWh5CrEbQRA0g==

@revoked your-host3.your.domain.com ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBLEPTqn+R5BsCTy8Qvq+Fga/pflGdeH0GHnksLlE65MiWOKWc4WvFuscS0wYVIWSLzrq3g+q739pz3j9HbgO10I="


Certificate-based known hosts verification is also supported. A CA key pair is generated for Nessus scanners to trust. Each scan target sends the public part of its host key to the scanner to be signed by the CA. The signed certificate is sent back to the scan target to be used in the host authentication part of the protocol exchange. The known hosts file used by Nessus becomes much simpler. It now contains a single line with the public key of the CA (see below):

@cert-authority *.your.domain.com ecdsa-sha2-nistp384 AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBJCQqR5NFoGJ8olau6CR3eOg0QZau0H2a4Li+ABmIYVgPscd2VhjBWE3N6WbMiWVk9dCy8Ih+rV62tsA9XbzgzUX0fw+ICkMP0ZlD8ER9MtfRoK4a8hOiy8IoMxORarZaA==

Not the end: Cryptography study will continue

Cryptography is complex. The mathematics are esoteric, and the legal and political realities surrounding cryptography are just as knotty.

ECC will be relevant for some time yet. Shor’s algorithm will theoretically require a quantum computer with 2,330 qubits to crack an elliptic curve with a 256-bit modulus. Putting that in context: Last year, IBM announced a quantum CPU featuring 17 qubits, with the prospect of 50 qubits on the horizon. At least one researcher believes that larger quantum computers may not even be possible.

The rise of IoT has driven recent interest in ECC due to the superior protection offered by smaller keys. This is a critical advantage in small devices with limited storage.

Nevertheless, ECC has proved more problematic and more prone to security flaws than integer factorization cryptography. Certain elliptic curves are degenerate, such as elliptic curves over a binary field or over primes. There’s also speculation that other classes of degenerate curves may exist. ECC in practice has been sensitive to the quality of the underlying system’s random number generator and vulnerable to side-channel attacks.

So, this isn’t the end of the story, but it’s all I have for now. At Tenable, we’ll keep studying cryptography and working to keep you ahead in the race.

相關文章

您可以利用的網路安全最新消息

輸入您的電子郵件,就不會錯過來自 Tenable 專家提供的及時警示與安全指引。

Tenable Vulnerability Management

享受現代、雲端型的弱點管理平台,能夠以無與倫比的準確性查看和追蹤所有資產。

除了阿拉伯聯合大公國外,在世界各地建立的 Tenable Vulnerability Management 試用版均包含 Tenable Lumin 及 Tenable Web App Scanning。

Tenable Vulnerability Management

享受現代、雲端型的弱點管理平台,使您能夠以無與倫比的準確性查看和追蹤所有資產。 立即訂閱一年。

100 項資產

選取您的訂閱選項:

立即購買

Tenable Vulnerability Management

享受現代、雲端型的弱點管理平台,能夠以無與倫比的準確性查看和追蹤所有資產。

除了阿拉伯聯合大公國外,在世界各地建立的 Tenable Vulnerability Management 試用版均包含 Tenable Lumin 及 Tenable Web App Scanning。

Tenable Vulnerability Management

享受現代、雲端型的弱點管理平台,使您能夠以無與倫比的準確性查看和追蹤所有資產。 立即訂閱一年。

100 項資產

選取您的訂閱選項:

立即購買

Tenable Vulnerability Management

享受現代、雲端型的弱點管理平台,能夠以無與倫比的準確性查看和追蹤所有資產。

除了阿拉伯聯合大公國外,在世界各地建立的 Tenable Vulnerability Management 試用版均包含 Tenable Lumin 及 Tenable Web App Scanning。

Tenable Vulnerability Management

享受現代、雲端型的弱點管理平台,使您能夠以無與倫比的準確性查看和追蹤所有資產。 立即訂閱一年。

100 項資產

選取您的訂閱選項:

立即購買

試用 Tenable Web App Scanning

享受完整存取我們專為新型應用程式所設計、屬於 Tenable One 曝險管理平台一部分的最新 Web 應用程式掃描產品。不需耗費大量人力或中斷重要 Web 應用程式,即可高度準確且安全地掃描您整個線上產品系列中是否含有任何弱點。 立即註冊。

您的 Tenable Web App Scanning 試用版軟體也包含 Tenable Vulnerability Management 和 Tenable Lumin。

購買 Tenable Web App Scanning

享受現代、雲端型的弱點管理平台,使您能夠以無與倫比的準確性查看和追蹤所有資產。 立即訂閱一年。

5 個 FQDN

$3,578

立即購買

試用 Tenable Lumin

利用 Tenable Lumin 視覺化並探索您的曝險管理、追蹤經過一段時間後風險降低的情形以及與同業進行指標分析。

您的 Tenable Lumin 試用版軟體也包含 Tenable Vulnerability Management 和 Tenable Web App Scanning。

購買 Tenable Lumin

聯絡業務代表,瞭解 Tenable Lumin 如何協助您取得您整個環境的深入解析和管理網路風險。

免費試用 Tenable Nessus Professional

免費試用 7 天

Tenable Nessus 是目前市場上最全方位的弱點掃描器。

最新 - Tenable Nessus Expert
現已上市

Nessus Expert 新增了更多功能,包括外部攻擊破綻掃描和新增網域及掃描雲端基礎架構的能力。按這裡試用 Nessus Expert。

請填妥以下表單以繼續 Nessus Pro 試用。

購買 Tenable Nessus Professional

Tenable Nessus 是目前市場上最全方位的弱點掃描器。Tenable Nessus Professional 可協助將弱點掃描流程自動化,節省您執行合規工作的時間並讓您與 IT 團隊合作。

購買多年期授權,節省更多。新增 365 天全年無休 24 小時全天候可使用電話、社群及對談的進階支援。

選擇您的授權

購買多年期授權,節省更多。

增加支援與訓練

免費試用 Tenable Nessus Expert

免費試用 7 天

Nessus Expert 是專為現代攻擊破綻所打造,它能讓您從 IT 到雲端洞察更多資訊,並保護貴公司免於弱點危害。

您已經有 Tenable Nessus Professional 了嗎?
升級至 Nessus Expert,免費試用 7 天。

購買 Tenable Nessus Expert

Nessus Expert 是專為現代攻擊破綻所打造,它能讓您從 IT 到雲端洞察更多資訊,並保護貴公司免於弱點危害。

選擇您的授權

購買多年期授權省更多!

增加支援與訓練