MiracleLinux 9kernel-5.14.0-427.31.1.el9_4 (AXSA:2024-8705:26)

high Nessus Plugin ID 293620

概要

遠端 MiracleLinux 主機缺少一個或多個安全性更新。

說明

遠端 MiracleLinux 9 主機已安裝受到多個弱點影響的套件如 AXSA:2024-8705:26 公告中所提及。

核心:phy: (CVE-2024-26600) 核心:netfilter:多個缺陷 (CVE-2024-26808, CVE-2024-27065, CVE-2024-35899, CVE-2024-36005) 核心:cifs: (CVE-2024-26828) 核心:wifi:多個缺陷 (CVE-2024-26897, CVE-2024-27052, CVE-2024-27049, CVE-2023-52651, CVE-2024-35789, CVE-2024-27434, CVE-2024-35845, CVE-2024-35937, CVE-2024-36941, CVE-2024-36922, CVE-2024-36921, CVE-2024-38575) 核心:nfs: (CVE-2024-26868) 核心:igc:(CVE-2024-26853) 核心:dmaengine/idxd: (CVE-2024-21823) 核心:ipv6:多個缺陷 (CVE-2024-27417, CVE-2024-35969, CVE-2024-36903, CVE-2024-40961) 核心:vt:(CVE-2024-35823) 核心:efi: (CVE-2024-35800) 核心:mlxsw: (CVE-2024-35852) 核心:eeprom: (CVE-2024-35848) 核心:ice: (CVE-2024-35911) 核心:platform/x86: (CVE-2023-52864) 核心:i40e: (CVE-2024-36020) 核心:rtnetlink: (CVE-2024-36017) 核心:網路:多個缺陷 (CVE-2024-36929, CVE-2024-36971, CVE-2021-47606, CVE-2024-38558, CVE-2024-40928, CVE-2024-40954) 核心:ipvlan: (CVE-2024-33621) 核心:tcp: (CVE-2024-37356) 核心:virtio: (CVE-2024-37353) 核心:tls: (CVE-2024-36489) 核心:cxl/region: (CVE-2024-38391) 核心: bonding: (CVE-2024-39487) 核心: netns: (CVE-2024-40958) CVE-2021-47606 Linux 核心中,以下漏洞已修復:net: netlink: af_netlink: Prevent empty skb by adding a check on len. Adding a check on len parameter to avoid empty skb. This prevents a division error in netem_enqueue function which is caused when skb->len=0 and skb->data_len=0 in the randomized corruption step as shown below. skb->data[prandom_u32() % skb_headlen(skb)] ^= 1<<(prandom_u32() % 8); Crash Report: [ 343.170349] netdevsim netdevsim0 netdevsim3: set [1, 0] type 2 family 0 port 6081 - 0 [ 343.216110] netem: version 1.3 [ 343.235841] divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI [ 343.236680] CPU: 3 PID: 4288 Comm: reproducer Not tainted 5.16.0-rc1+ [ 343.237569] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 [ 343.238707] RIP:
0010:netem_enqueue+0x1590/0x33c0 [sch_netem] [ 343.239499] Code: 89 85 58 ff ff ff e8 5f 5d e9 d3 48 8b b5 48 ff ff ff 8b 8d 50 ff ff ff 8b 85 58 ff ff ff 48 8b bd 70 ff ff ff 31 d2 2b 4f 74 f1 48 b8 00 00 00 00 00 fc ff df 49 01 d5 4c 89 e9 48 c1 e9 03 [ 343.241883] RSP: 0018:ffff88800bcd7368 EFLAGS: 00010246 [343.242589] RAX: 00000000ba7c0a9c RBX: 0000000000000001 RCX: 0000000000000000 [ 343.243542] RDX:
0000000000000000 RSI: ffff88800f8edb10 RDI: ffff88800f8eda40 [ 343.244474] RBP: ffff88800bcd7458 R08:
0000000000000000 R09: ffffffff94fb8445 [ 343.245403] R10: ffffffff94fb8336 R11: ffffffff94fb8445 R12:
0000000000000000 [ 343.246355] R13: ffff88800a5a7000 R14: ffff88800a5b5800 R15: 0000000000000020 [343.247291] FS: 00007fdde2bd7700(0000) GS:ffff888109780000(0000) knlGS:0000000000000000 [ 343.248350] CS:
0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 343.249120] CR2: 00000000200000c0 CR3: 000000000ef4c000 CR4: 00000000000006e0 [ 343.250076] Call Trace: [ 343.250423] [ 343.250713] ? memcpy+0x4d/0x60 [343.251162] ? netem_init+0xa0/0xa0 [sch_netem] [ 343.251795] ? __sanitizer_cov_trace_pc+0x21/0x60 [343.252443] netem_enqueue+0xe28/0x33c0 [sch_netem] [ 343.253102] ? stack_trace_save+0x87/0xb0 [343.253655] ? filter_irq_stacks+0xb0/0xb0 [ 343.254220] ? netem_init+0xa0/0xa0 [sch_netem] [ 343.254837] ?
__kasan_check_write+0x14/0x20 [ 343.255418] ? _raw_spin_lock+0x88/0xd6 [ 343.255953] dev_qdisc_enqueue+0x50/0x180 [ 343.256508] __dev_queue_xmit+0x1a7e/0x3090 [ 343.257083] ? netdev_core_pick_tx+0x300/0x300 [ 343.257690] ? check_kcov_mode+0x10/0x40 [ 343.258219] ?
_raw_spin_unlock_irqrestore+0x29/0x40 [ 343.258899] ? __kasan_init_slab_obj+0x24/0x30 [ 343.259529] ? setup_object.isra.71+0x23/0x90 [ 343.260121] ? new_slab+0x26e/0x4b0 [ 343.260609] ? kasan_poison+0x3a/0x50 [ 343.261118] ? kasan_unpoison+0x28/0x50 [ 343.261637] ? __kasan_slab_alloc+0x71/0x90 [ 343.262214] ? memcpy+0x4d/0x60 [ 343.262674] ? write_comp_data+0x2f/0x90 [ 343.263209] ? __kasan_check_write+0x14/0x20 [343.263802] ? __skb_clone+0x5d6/0x840 [ 343.264329] ? __sanitizer_cov_trace_pc+0x21/0x60 [ 343.264958] dev_queue_xmit+0x1c/0x20 [ 343.265470] netlink_deliver_tap+0x652/0x9c0 [ 343.266067] netlink_unicast+0x5a0/0x7f0 [ 343.266608] ? netlink_attachskb+0x860/0x860 [ 343.267183] ?
__sanitizer_cov_trace_pc+0x21/0x60 [ 343.267820] ? write_comp_data+0x2f/0x90 [ 343.268367] netlink_sendmsg+0x922/0xe80 [ 343.268899] ? netlink_unicast+0x7f0/0x7f0 [ 343.269472] ?
__sanitizer_cov_trace_pc+0x21/0x60 [ 343.270099] ? write_comp_data+0x2f/0x90 [ 343.270644] ? netlink_unicast+0x7f0/0x7f0 [ 343.271210] sock_sendmsg+0x155/0x190 [ 343.271721]
____sys_sendmsg+0x75f/0x8f0 [ 343.272262] ? kernel_sendmsg+0x60/0x60 [ 343.272788] ? write_comp_data+0x2f/0x90 [ 343.273332] ? write_comp_data+0x2f/0x90 [ 343.273869]
___sys_sendmsg+0x10f/0x190 [ 343.274405] ? sendmsg_copy_msghdr+0x80/0x80 [ 343.274984] ? slab_post_alloc_hook+0x70/0x230 [ 343.275597] ? futex_wait_setup+0x240/0x240 [ 343.276175] ? security_file_alloc+0x3e/0x170 [ 343.276779] ? write_comp_d ---truncated--- CVE-2023-52651 REJECTED CVE-2023-52864 In the Linux kernel, the following vulnerability has been resolved: platform/x86: wmi: Fix opening of char device Since commit fa1f68db6ca7 (drivers: misc: pass miscdevice pointer via file private data), the miscdevice stores a pointer to itself inside filp->private_data, which means that private_data will not be NULL when wmi_char_open() is called. This might cause memory corruption should wmi_char_open() be unable to find its driver, something which can happen when the associated WMI device is deleted in wmi_free_devices(). Fix the problem by using the miscdevice pointer to retrieve the WMI device data associated with a char device using container_of(). This also avoids wmi_char_open() picking a wrong WMI device bound to a driver with the same name as the original driver.
CVE-2024-21823 Hardware logic with insecure de-synchronization in Intel(R) DSA and Intel(R) IAA for some Intel(R) 4th or 5th generation Xeon(R) processors may allow an authorized user to potentially enable escalation of privilege local access CVE-2024-26600 In the Linux kernel, the following vulnerability has been resolved: phy: ti: phy-omap-usb2: Fix NULL pointer dereference for SRP If the external phy working together with phy-omap-usb2 does not implement send_srp(), we may still attempt to call it. This can happen on an idle Ethernet gadget triggering a wakeup for example: configfs-gadget.g1 gadget.0: ECM Suspend configfs-gadget.g1 gadget.0: Port suspended.
Triggering wakeup ... Unable to handle kernel NULL pointer dereference at virtual address 00000000 when execute ... PC is at 0x0 LR is at musb_gadget_wakeup+0x1d4/0x254 [musb_hdrc] ... musb_gadget_wakeup [musb_hdrc] from usb_gadget_wakeup+0x1c/0x3c [udc_core] usb_gadget_wakeup [udc_core] from eth_start_xmit+0x3b0/0x3d4 [u_ether] eth_start_xmit [u_ether] from dev_hard_start_xmit+0x94/0x24c dev_hard_start_xmit from sch_direct_xmit+0x104/0x2e4 sch_direct_xmit from __dev_queue_xmit+0x334/0xd88
__dev_queue_xmit from arp_solicit+0xf0/0x268 arp_solicit from neigh_probe+0x54/0x7c neigh_probe from
__neigh_event_send+0x22c/0x47c __neigh_event_send from neigh_resolve_output+0x14c/0x1c0 neigh_resolve_output from ip_finish_output2+0x1c8/0x628 ip_finish_output2 from ip_send_skb+0x40/0xd8 ip_send_skb from udp_send_skb+0x124/0x340 udp_send_skb from udp_sendmsg+0x780/0x984 udp_sendmsg from
__sys_sendto+0xd8/0x158 __sys_sendto from ret_fast_syscall+0x0/0x58 Let's fix the issue by checking for send_srp() and set_vbus() before calling them. For USB peripheral only cases these both could be NULL.
CVE-2024-26808 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_chain_filter: handle NETDEV_UNREGISTER for inet/ingress basechain Remove netdevice from inet/ingress basechain in case NETDEV_UNREGISTER event is reported, otherwise a stale reference to netdevice remains in the hook list.
CVE-2024-26828 In the Linux kernel, the following vulnerability has been resolved: cifs: fix underflow in parse_server_interfaces() In this loop, we step through the buffer and after each item we check if the size_left is greater than the minimum size we need. However, the problem is that bytes_left is type ssize_t while sizeof() is type size_t. That means that because of type promotion, the comparison is done as an unsigned and if we have negative bytes left the loop continues instead of ending.
CVE-2024-26853 In the Linux kernel, the following vulnerability has been resolved: igc: avoid returning frame twice in XDP_REDIRECT When a frame can not be transmitted in XDP_REDIRECT (e.g. due to a full queue), it is necessary to free it by calling xdp_return_frame_rx_napi. However, this is the responsibility of the caller of the ndo_xdp_xmit (see for example bq_xmit_all in kernel/bpf/devmap.c) and thus calling it inside igc_xdp_xmit (which is the ndo_xdp_xmit of the igc driver) as well will lead to memory corruption. In fact, bq_xmit_all expects that it can return all frames after the last successfully transmitted one.
Therefore, break for the first not transmitted frame, but do not call xdp_return_frame_rx_napi in igc_xdp_xmit. This is equally implemented in other Intel drivers such as the igb. There are two alternatives to this that were rejected: 1. Return num_frames as all the frames would have been transmitted and release them inside igc_xdp_xmit. While it might work technically, it is not what the return value is meant to represent (i.e. the number of SUCCESSFULLY transmitted packets). 2. Rework kernel/bpf/devmap.c and all drivers to support non-consecutively dropped packets. Besides being complex, it likely has a negative performance impact without a significant gain since it is anyway unlikely that the next frame can be transmitted if the previous one was dropped. The memory corruption can be reproduced with the following script which leads to a kernel panic after a few seconds. It basically generates more traffic than a i225 NIC can transmit and pushes it via XDP_REDIRECT from a virtual interface to the physical interface where frames get dropped. #!/bin/bash INTERFACE=enp4s0 INTERFACE_IDX=`cat /sys/class/net/$INTERFACE/ifindex` sudo ip link add dev veth1 type veth peer name veth2 sudo ip link set up $INTERFACE sudo ip link set up veth1 sudo ip link set up veth2 cat << EOF > redirect.bpf.c SEC(prog) int redirect(struct xdp_md *ctx) { return bpf_redirect($INTERFACE_IDX, 0); } char _license[] SEC(license) = GPL; EOF clang -O2 -g -Wall -target bpf -c redirect.bpf.c -o redirect.bpf.o sudo ip link set veth2 xdp obj redirect.bpf.o cat << EOF > pass.bpf.c SEC(prog) int pass(struct xdp_md *ctx) {return XDP_PASS; } char _license[] SEC(license) = GPL; EOF clang -O2 -g -Wall -target bpf -c pass.bpf.c -o pass.bpf.o sudo ip link set $INTERFACE xdp obj pass.bpf.o cat << EOF > trafgen.cfg { /* Ethernet Header */ 0xe8, 0x6a, 0x64, 0x41, 0xbf, 0x46, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, const16(ETH_P_IP), /* IPv4 Header */ 0b01000101, 0, # IPv4 version, IHL, TOS const16(1028), # IPv4 total length (UDP length + 20 bytes (IP header)) const16(2), # IPv4 ident 0b01000000, 0, # IPv4 flags, fragmentation off 64, # IPv4 TTL 17, # Protocol UDP csumip(14, 33), # IPv4 checksum /* UDP Header */ 10, 0, 1, 1, # IP Src - adapt as needed 10, 0, 1, 2, # IP Dest - adapt as needed const16(6666), # UDP Src Port const16(6666), # UDP Dest Port const16(1008), # UDP length (UDP header 8 bytes + payload length) csumudp(14, 34), # UDP checksum /* Payload */ fill('W', 1000), } EOF sudo trafgen -i trafgen.cfg -b3000MB
-o veth1 --cpp CVE-2024-26868 In the Linux kernel, the following vulnerability has been resolved: nfs: fix panic when nfs4_ff_layout_prepare_ds() fails We've been seeing the following panic in production BUG: kernel NULL pointer dereference, address: 0000000000000065 PGD 2f485f067 P4D 2f485f067 PUD 2cc5d8067 PMD 0 RIP:
0010:ff_layout_cancel_io+0x3a/0x90 [nfs_layout_flexfiles] Call Trace: ? __die+0x78/0xc0 ? page_fault_oops+0x286/0x380 ? __rpc_execute+0x2c3/0x470 [sunrpc] ? rpc_new_task+0x42/0x1c0 [sunrpc] ? exc_page_fault+0x5d/0x110 ? asm_exc_page_fault+0x22/0x30 ? ff_layout_free_layoutreturn+0x110/0x110 [nfs_layout_flexfiles] ? ff_layout_cancel_io+0x3a/0x90 [nfs_layout_flexfiles] ? ff_layout_cancel_io+0x6f/0x90 [nfs_layout_flexfiles] pnfs_mark_matching_lsegs_return+0x1b0/0x360 [nfsv4] pnfs_error_mark_layout_for_return+0x9e/0x110 [nfsv4] ? ff_layout_send_layouterror+0x50/0x160 [nfs_layout_flexfiles] nfs4_ff_layout_prepare_ds+0x11f/0x290 [nfs_layout_flexfiles] ff_layout_pg_init_write+0xf0/0x1f0 [nfs_layout_flexfiles] __nfs_pageio_add_request+0x154/0x6c0 [nfs] nfs_pageio_add_request+0x26b/0x380 [nfs] nfs_do_writepage+0x111/0x1e0 [nfs] nfs_writepages_callback+0xf/0x30 [nfs] write_cache_pages+0x17f/0x380 ? nfs_pageio_init_write+0x50/0x50 [nfs] ? nfs_writepages+0x6d/0x210 [nfs] ? nfs_writepages+0x6d/0x210 [nfs] nfs_writepages+0x125/0x210 [nfs] do_writepages+0x67/0x220 ? generic_perform_write+0x14b/0x210 filemap_fdatawrite_wbc+0x5b/0x80 file_write_and_wait_range+0x6d/0xc0 nfs_file_fsync+0x81/0x170 [nfs] ? nfs_file_mmap+0x60/0x60 [nfs]
__x64_sys_fsync+0x53/0x90 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Inspecting the core with drgn I was able to pull this >>> prog.crashed_thread().stack_trace()[0] #0 at 0xffffffffa079657a (ff_layout_cancel_io+0x3a/0x84) in ff_layout_cancel_io at fs/nfs/flexfilelayout/flexfilelayout.c:2021:27 >>> prog.crashed_thread().stack_trace()[0]['idx'] (u32)1 >>> prog.crashed_thread().stack_trace()[0]['flseg'].mirror_array[1].mirror_ds (struct nfs4_ff_layout_ds
*)0xffffffffffffffed This is clear from the stack trace, we call nfs4_ff_layout_prepare_ds() which could error out initializing the mirror_ds, and then we go to clean it all up and our check is only for if (!mirror->mirror_ds). This is inconsistent with the rest of the users of mirror_ds, which have if (IS_ERR_OR_NULL(mirror_ds)) to keep from tripping over this exact scenario. Fix this up in ff_layout_cancel_io() to make sure we don't panic when we get an error. I also spot checked all the other instances of checking mirror_ds and we appear to be doing the correct checks everywhere, only unconditionally dereferencing mirror_ds when we know it would be valid.
CVE-2024-26897 In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: delay all of ath9k_wmi_event_tasklet() until init is complete The ath9k_wmi_event_tasklet() used in ath9k_htc assumes that all the data structures have been fully initialised by the time it runs. However, because of the order in which things are initialised, this is not guaranteed to be the case, because the device is exposed to the USB subsystem before the ath9k driver initialisation is completed. We already committed a partial fix for this in commit: 8b3046abc99e (ath9k_htc: fix NULL pointer dereference at ath9k_htc_tx_get_packet()) However, that commit only aborted the WMI_TXSTATUS_EVENTID command in the event tasklet, pairing it with an initialisation complete bit in the TX struct. It seems syzbot managed to trigger the race for one of the other commands as well, so let's just move the existing synchronisation bit to cover the whole tasklet (setting it at the end of ath9k_htc_probe_device() instead of inside ath9k_tx_init()).
CVE-2024-27049 In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7925e: fix use-after-free in free_irq() From commit a304e1b82808 ([PATCH] Debug shared irqs), there is a test to make sure the shared irq handler should be able to handle the unexpected event after deregistration. For this case, let's apply MT76_REMOVED flag to indicate the device was removed and do not run into the resource access anymore.
CVE-2024-27052 In the Linux kernel, the following vulnerability has been resolved: wifi: rtl8xxxu: add cancel_work_sync() for c2hcmd_work The workqueue might still be running, when the driver is stopped. To avoid a use-after-free, call cancel_work_sync() in rtl8xxxu_stop().
CVE-2024-27065 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: do not compare internal table flags on updates Restore skipping transaction if table update does not modify flags.
CVE-2024-27417 In the Linux kernel, the following vulnerability has been resolved: ipv6: fix potential struct net leak in inet6_rtm_getaddr() It seems that if userspace provides a correct IFA_TARGET_NETNSID value but no IFA_ADDRESS and IFA_LOCAL attributes, inet6_rtm_getaddr() returns -EINVAL with an elevated struct net refcount.
CVE-2024-27434 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: don't set the MFP flag for the GTK The firmware doesn't need the MFP flag for the GTK, it can even make the firmware crash.
in case the AP is configured with: group cipher TKIP and MFPC. We would send the GTK with cipher = TKIP and MFP which is of course not possible.
CVE-2024-33621 In the Linux kernel, the following vulnerability has been resolved: ipvlan: Dont Use skb->sk in ipvlan_process_v{4,6}_outbound Raw packet from PF_PACKET socket ontop of an IPv6-backed ipvlan device will hit WARN_ON_ONCE() in sk_mc_loop() through sch_direct_xmit() path. WARNING: CPU: 2 PID: 0 at net/core/sock.c:775 sk_mc_loop+0x2d/0x70 Modules linked in: sch_netem ipvlan rfkill cirrus drm_shmem_helper sg drm_kms_helper CPU: 2 PID: 0 Comm: swapper/2 Kdump: loaded Not tainted 6.9.0+ #279 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP:
0010:sk_mc_loop+0x2d/0x70 Code: fa 0f 1f 44 00 00 65 0f b7 15 f7 96 a3 4f 31 c0 66 85 d2 75 26 48 85 ff 74 1c RSP: 0018:ffffa9584015cd78 EFLAGS: 00010212 RAX: 0000000000000011 RBX: ffff91e585793e00 RCX:
0000000002c6a001 RDX: 0000000000000000 RSI: 0000000000000040 RDI: ffff91e589c0f000 RBP: ffff91e5855bd100 R08: 0000000000000000 R09: 3d00545216f43d00 R10: ffff91e584fdcc50 R11: 00000060dd8616f4 R12:
ffff91e58132d000 R13: ffff91e584fdcc68 R14: ffff91e5869ce800 R15: ffff91e589c0f000 FS:
0000000000000000(0000) GS:ffff91e898100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0:
0000000080050033 CR2: 00007f788f7c44c0 CR3: 0000000008e1a000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400 Call Trace: ? __warn (kernel/panic.c:693) ? sk_mc_loop (net/core/sock.c:760) ? report_bug (lib/bug.c:201 lib/bug.c:219) ? handle_bug (arch/x86/kernel/traps.c:239) ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1)) ? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621) ? sk_mc_loop (net/core/sock.c:760) ip6_finish_output2 (net/ipv6/ip6_output.c:83 (discriminator 1)) ? nf_hook_slow (net/netfilter/core.c:626) ip6_finish_output (net/ipv6/ip6_output.c:222) ? __pfx_ip6_finish_output (net/ipv6/ip6_output.c:215) ipvlan_xmit_mode_l3 (drivers/net/ipvlan/ipvlan_core.c:602) ipvlan ipvlan_start_xmit (drivers/net/ipvlan/ipvlan_main.c:226) ipvlan dev_hard_start_xmit (net/core/dev.c:3594) sch_direct_xmit (net/sched/sch_generic.c:343) __qdisc_run (net/sched/sch_generic.c:416) net_tx_action (net/core/dev.c:5286) handle_softirqs (kernel/softirq.c:555)
__irq_exit_rcu (kernel/softirq.c:589) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1043) The warning triggers as this: packet_sendmsg packet_snd //skb->sk is packet sk __dev_queue_xmit __dev_xmit_skb //q->enqueue is not NULL __qdisc_run sch_direct_xmit dev_hard_start_xmit ipvlan_start_xmit ipvlan_xmit_mode_l3 //l3 mode ipvlan_process_outbound //vepa flag ipvlan_process_v6_outbound ip6_local_out
__ip6_finish_output ip6_finish_output2 //multicast packet sk_mc_loop //sk->sk_family is AF_PACKET Call ip{6}_local_out() with NULL sk in ipvlan as other tunnels to fix this.
CVE-2024-35789 In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: check/clear fast rx for non-4addr sta VLAN changes When moving a station out of a VLAN and deleting the VLAN afterwards, the fast_rx entry still holds a pointer to the VLAN's netdev, which can cause use-after-free bugs. Fix this by immediately calling ieee80211_check_fast_rx after the VLAN change.
CVE-2024-35800 In the Linux kernel, the following vulnerability has been resolved: efi: fix panic in kdump kernel Check if get_next_variable() is actually valid pointer before calling it. In kdump kernel this method is set to NULL that causes panic during the kexec-ed kernel boot. Tested with QEMU and OVMF firmware.
CVE-2024-35823 In the Linux kernel, the following vulnerability has been resolved: vt: fix unicode buffer corruption when deleting characters This is the same issue that was fixed for the VGA text buffer in commit 39cdb68c64d8 (vt: fix memory overlapping when deleting chars in the buffer). The cure is also the same i.e. replace memcpy() with memmove() due to the overlaping buffers.
CVE-2024-35845 In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: dbg-tlv: ensure NUL termination The iwl_fw_ini_debug_info_tlv is used as a string, so we must ensure the string is terminated correctly before using it.
CVE-2024-35848 In the Linux kernel, the following vulnerability has been resolved: eeprom: at24: fix memory corruption race condition If the eeprom is not accessible, an nvmem device will be registered, the read will fail, and the device will be torn down. If another driver accesses the nvmem device after the teardown, it will reference invalid memory. Move the failure point before registering the nvmem device.
CVE-2024-35852 In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work The rehash delayed work is rescheduled with a delay if the number of credits at end of the work is not negative as supposedly it means that the migration ended. Otherwise, it is rescheduled immediately. After mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash the above is no longer accurate as a non-negative number of credits is no longer indicative of the migration being done. It can also happen if the work encountered an error in which case the migration will resume the next time the work is scheduled. The significance of the above is that it is possible for the work to be pending and associated with hints that were allocated when the migration started. This leads to the hints being leaked [1] when the work is canceled while pending as part of ACL region dismantle. Fix by freeing the hints if hints are associated with a work that was canceled while pending. Blame the original commit since the reliance on not having a pending work associated with hints is fragile. [1] unreferenced object 0xffff88810e7c3000 (size 256): comm kworker/0:16, pid 176, jiffies 4295460353 hex dump (first 32 bytes): 00 30 95 11 81 88 ff ff 61 00 00 00 00 00 00 80 .0......a....... 00 00 61 00 40 00 00 00 00 00 00 00 04 00 00 00 ..a.@........... backtrace (crc 2544ddb9): [<00000000cf8cfab3>] kmalloc_trace+0x23f/0x2a0 [<000000004d9a1ad9>] objagg_hints_get+0x42/0x390 [<000000000b143cf3>] mlxsw_sp_acl_erp_rehash_hints_get+0xca/0x400 [<0000000059bdb60a>] mlxsw_sp_acl_tcam_vregion_rehash_work+0x868/0x1160 [<00000000e81fd734>] process_one_work+0x59c/0xf20 [<00000000ceee9e81>] worker_thread+0x799/0x12c0 [<00000000bda6fe39>] kthread+0x246/0x300 [<0000000070056d23>] ret_from_fork+0x34/0x70 [<00000000dea2b93e>] ret_from_fork_asm+0x1a/0x30 CVE-2024-35899 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: flush pending destroy work before exit_net release Similar to 2c9f0293280e (netfilter: nf_tables: flush pending destroy work before netlink notifier) to address a race between exit_net and the destroy workqueue. The trace below shows an element to be released via destroy workqueue while exit_net path (triggered via module removal) has already released the set that is used in such transaction. [ 1360.547789] BUG: KASAN: slab-use-after-free in nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.547861] Read of size 8 at addr ffff888140500cc0 by task kworker/4:1/152465 [ 1360.547870] CPU: 4 PID: 152465 Comm: kworker/4:1 Not tainted 6.8.0+ #359 [ 1360.547882] Workqueue: events nf_tables_trans_destroy_work [nf_tables] [1360.547984] Call Trace: [ 1360.547991] [ 1360.547998] dump_stack_lvl+0x53/0x70 [ 1360.548014] print_report+0xc4/0x610 [ 1360.548026] ? __virt_addr_valid+0xba/0x160 [ 1360.548040] ?
__pfx__raw_spin_lock_irqsave+0x10/0x10 [ 1360.548054] ? nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.548176] kasan_report+0xae/0xe0 [ 1360.548189] ? nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.548312] nf_tables_trans_destroy_work+0x3f5/0x590 [nf_tables] [ 1360.548447] ?
__pfx_nf_tables_trans_destroy_work+0x10/0x10 [nf_tables] [ 1360.548577] ? _raw_spin_unlock_irq+0x18/0x30 [1360.548591] process_one_work+0x2f1/0x670 [ 1360.548610] worker_thread+0x4d3/0x760 [ 1360.548627] ?
__pfx_worker_thread+0x10/0x10 [ 1360.548640] kthread+0x16b/0x1b0 [ 1360.548653] ? __pfx_kthread+0x10/0x10 [ 1360.548665] ret_from_fork+0x2f/0x50 [ 1360.548679] ? __pfx_kthread+0x10/0x10 [ 1360.548690] ret_from_fork_asm+0x1a/0x30 [ 1360.548707] [ 1360.548719] Allocated by task 192061: [ 1360.548726] kasan_save_stack+0x20/0x40 [ 1360.548739] kasan_save_track+0x14/0x30 [ 1360.548750]
__kasan_kmalloc+0x8f/0xa0 [ 1360.548760] __kmalloc_node+0x1f1/0x450 [ 1360.548771] nf_tables_newset+0x10c7/0x1b50 [nf_tables] [ 1360.548883] nfnetlink_rcv_batch+0xbc4/0xdc0 [nfnetlink] [1360.548909] nfnetlink_rcv+0x1a8/0x1e0 [nfnetlink] [ 1360.548927] netlink_unicast+0x367/0x4f0 [1360.548935] netlink_sendmsg+0x34b/0x610 [ 1360.548944] ____sys_sendmsg+0x4d4/0x510 [ 1360.548953]
___sys_sendmsg+0xc9/0x120 [ 1360.548961] __sys_sendmsg+0xbe/0x140 [ 1360.548971] do_syscall_64+0x55/0x120 [ 1360.548982] entry_SYSCALL_64_after_hwframe+0x55/0x5d [ 1360.548994] Freed by task 192222: [1360.548999] kasan_save_stack+0x20/0x40 [ 1360.549009] kasan_save_track+0x14/0x30 [ 1360.549019] kasan_save_free_info+0x3b/0x60 [ 1360.549028] poison_slab_object+0x100/0x180 [ 1360.549036]
__kasan_slab_free+0x14/0x30 [ 1360.549042] kfree+0xb6/0x260 [ 1360.549049] __nft_release_table+0x473/0x6a0 [nf_tables] [ 1360.549131] nf_tables_exit_net+0x170/0x240 [nf_tables] [ 1360.549221] ops_exit_list+0x50/0xa0 [ 1360.549229] free_exit_list+0x101/0x140 [ 1360.549236] unregister_pernet_operations+0x107/0x160 [ 1360.549245] unregister_pernet_subsys+0x1c/0x30 [ 1360.549254] nf_tables_module_exit+0x43/0x80 [nf_tables] [ 1360.549345] __do_sys_delete_module+0x253/0x370 [1360.549352] do_syscal ...

請注意描述已因長度而被截斷。如需完整描述請參閱供應商公告。

Tenable 已直接從 MiracleLinux 安全性公告擷取前置描述區塊。

請注意,Nessus 並未測試這些問題,而是僅依據應用程式自我報告的版本號碼作出判斷。

解決方案

更新受影響的套件。

另請參閱

https://tsn.miraclelinux.com/en/node/19889

Plugin 詳細資訊

嚴重性: High

ID: 293620

檔案名稱: miracle_linux_AXSA-2024-8705.nasl

版本: 1.1

類型: local

已發布: 2026/1/20

已更新: 2026/1/20

支援的感應器: Nessus Agent, Nessus

風險資訊

VPR

風險因素: High

分數: 7.4

Vendor

Vendor Severity: High

CVSS v2

風險因素: Medium

基本分數: 6.8

時間性分數: 5.6

媒介: CVSS2#AV:L/AC:L/Au:S/C:C/I:C/A:C

CVSS 評分資料來源: CVE-2024-40958

CVSS v3

風險因素: High

基本分數: 7.8

時間性分數: 7.2

媒介: CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

時間媒介: CVSS:3.0/E:F/RL:O/RC:C

弱點資訊

CPE: p-cpe:/a:miracle:linux:kernel-debug, p-cpe:/a:miracle:linux:kernel-debug-devel, p-cpe:/a:miracle:linux:kernel-tools, cpe:/o:miracle:linux:9, p-cpe:/a:miracle:linux:kernel-debug-core, p-cpe:/a:miracle:linux:kernel-tools-libs, p-cpe:/a:miracle:linux:kernel-cross-headers, p-cpe:/a:miracle:linux:kernel-debug-modules-extra, p-cpe:/a:miracle:linux:bpftool, p-cpe:/a:miracle:linux:rtla, p-cpe:/a:miracle:linux:kernel-abi-stablelists, p-cpe:/a:miracle:linux:perf, p-cpe:/a:miracle:linux:libperf, p-cpe:/a:miracle:linux:kernel-modules-core, p-cpe:/a:miracle:linux:kernel-debug-uki-virt, p-cpe:/a:miracle:linux:kernel-debug-modules, p-cpe:/a:miracle:linux:kernel, p-cpe:/a:miracle:linux:kernel-devel-matched, p-cpe:/a:miracle:linux:kernel-uki-virt, p-cpe:/a:miracle:linux:kernel-debug-devel-matched, p-cpe:/a:miracle:linux:kernel-headers, p-cpe:/a:miracle:linux:kernel-debug-modules-core, p-cpe:/a:miracle:linux:kernel-devel, p-cpe:/a:miracle:linux:kernel-core, p-cpe:/a:miracle:linux:kernel-modules-extra, p-cpe:/a:miracle:linux:kernel-modules, p-cpe:/a:miracle:linux:kernel-tools-libs-devel, p-cpe:/a:miracle:linux:rv, p-cpe:/a:miracle:linux:python3-perf

必要的 KB 項目: Host/local_checks_enabled, Host/cpu, Host/MiracleLinux/release, Host/MiracleLinux/rpm-list

可被惡意程式利用: true

可輕鬆利用: Exploits are available

修補程式發佈日期: 2024/8/26

弱點發布日期: 2021/7/21

CISA 已知遭惡意利用弱點到期日: 2024/8/28

參考資訊

CVE: CVE-2021-47606, CVE-2023-52864, CVE-2024-21823, CVE-2024-26600, CVE-2024-26808, CVE-2024-26828, CVE-2024-26853, CVE-2024-26868, CVE-2024-26897, CVE-2024-27049, CVE-2024-27052, CVE-2024-27065, CVE-2024-27417, CVE-2024-27434, CVE-2024-33621, CVE-2024-35789, CVE-2024-35800, CVE-2024-35823, CVE-2024-35845, CVE-2024-35848, CVE-2024-35852, CVE-2024-35899, CVE-2024-35911, CVE-2024-35937, CVE-2024-35969, CVE-2024-36005, CVE-2024-36017, CVE-2024-36020, CVE-2024-36489, CVE-2024-36903, CVE-2024-36921, CVE-2024-36922, CVE-2024-36929, CVE-2024-36941, CVE-2024-36971, CVE-2024-37356, CVE-2024-38558, CVE-2024-38575, CVE-2024-39487, CVE-2024-40928, CVE-2024-40954, CVE-2024-40958, CVE-2024-40961