MiracleLinux 7kernel-3.10.0-1160.119.1.0.2.el7.AXS7 (AXSA:2024-8820:28)

high Nessus Plugin ID 292981

概要

遠端 MiracleLinux 主機缺少一個或多個安全性更新。

說明

遠端 MiracleLinux 7 主機已安裝受到多個弱點影響的套件如 AXSA:2024-8820:28 公告中所提及。

* net: ice修正 ice_bridge_setlink() 中可能的 NULL 指標解除參照 {CVE-2024-26855}
* tty修正 imageblit 中的超出邊界 vmalloc 存取 {CVE-2021-47383}
* drm/vmwgfx修正隔離訊號發送事件中的無效讀取 {CVE-2024-36960}
* 還原 GFS2在卸載期間略過 dlm_unlock 呼叫 {CVE-2024-38570}
* 還原 GFS2忽略退出後的解鎖失敗 {CVE-2024-38570}
* 還原 GFS2修正跳過解鎖條件 {CVE-2024-38570}
* ima修正 dentry dname.name 的釋放後使用 {CVE-2024-39494}
* netfilter: nft_limit拒絕會造成整數溢位的組態 {CVE-2024-26668}
* ipv6移除使用 ipv4 內嵌的 max_size 檢查 {CVE-2023-52340}
* USB: core修正 usb_deauthorize_interface() 中的鎖死 {CVE-2024-26934}
* net: ip_tunnel確保在 ip_tunnel_rcv() 中提取內部標頭 {CVE-2024-26882}
* ip驗證虛擬裝置 xmit 上的標頭長度
* ext4改善 __ext4_remount() 中的錯誤復原程式碼路徑 {CVE-2024-0775}
* drivers/amd/pm修正 kv_parse_power_table 中的釋放後使用 {CVE-2023-52469}
* drm/amdgpu呼叫 amdgpu_vce_cs_reloc 時使用未初始化的值 *大小 {CVE-2024-42228}
* netfilter: nf_tables修正 __nft_expr_type_get() 中的潛在資料爭用 {CVE-2024-27020}
* af_unix修正與 connect() 的記憶體回收行程爭用 {CVE-2024-26923}
* md/raid5修正 raid5_cache_count 中的原子性違規 {CVE-2024-23307} CVE
CVE-2021-47383 在 Linux 核心中下列弱點已解決 tty: Fix out-of-bound vmalloc access in imageblit This issue happens when a userspace program does an ioctl FBIOPUT_VSCREENINFO passing the fb_var_screeninfo struct containing only the fields xres, yres, and bits_per_pixel with values. If this struct is the same as the previous ioctl, the vc_resize() detects it and doesn't call the resize_screen(), leaving the fb_var_screeninfo incomplete. And this leads to the updatescrollmode() calculates a wrong value to fbcon_display->vrows, which makes the real_y() return a wrong value of y, and that value, eventually, causes the imageblit to access an out-of-bound address value. To solve this issue I made the resize_screen() be called even if the screen does not need any resizing, so it will fix and fill the fb_var_screeninfo independently.
CVE-2024-0775 A use-after-free flaw was found in the __ext4_remount in fs/ext4/super.c in ext4 in the Linux kernel. This flaw allows a local user to cause an information leak problem while freeing the old quota file names before a potential failure, leading to a use-after-free.
CVE-2024-26855 In the Linux kernel, the following vulnerability has been resolved: net: ice: Fix potential NULL pointer dereference in ice_bridge_setlink() The function ice_bridge_setlink() may encounter a NULL pointer dereference if nlmsg_find_attr() returns NULL and br_spec is dereferenced subsequently in nla_for_each_nested(). To address this issue, add a check to ensure that br_spec is not NULL before proceeding with the nested attribute iteration.
CVE-2024-26882 In the Linux kernel, the following vulnerability has been resolved: net: ip_tunnel: make sure to pull inner header in ip_tunnel_rcv() Apply the same fix than ones found in : 8d975c15c0cd (ip6_tunnel: make sure to pull inner header in __ip6_tnl_rcv()) 1ca1ba465e55 (geneve: make sure to pull inner header in geneve_rx()) We have to save skb->network_header in a temporary variable in order to be able to recompute the network_header pointer after a pskb_inet_may_pull() call. pskb_inet_may_pull() makes sure the needed headers are in skb->head. syzbot reported: BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] BUG: KMSAN: uninit-value in IP_ECN_decapsulate include/net/inet_ecn.h:302 [inline] BUG: KMSAN: uninit-value in ip_tunnel_rcv+0xed9/0x2ed0 net/ipv4/ip_tunnel.c:409 __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] IP_ECN_decapsulate include/net/inet_ecn.h:302 [inline] ip_tunnel_rcv+0xed9/0x2ed0 net/ipv4/ip_tunnel.c:409 __ipgre_rcv+0x9bc/0xbc0 net/ipv4/ip_gre.c:389 ipgre_rcv net/ipv4/ip_gre.c:411 [inline] gre_rcv+0x423/0x19f0 net/ipv4/ip_gre.c:447 gre_rcv+0x2a4/0x390 net/ipv4/gre_demux.c:163 ip_protocol_deliver_rcu+0x264/0x1300 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x2b8/0x440 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:314 [inline] ip_local_deliver+0x21f/0x490 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:461 [inline] ip_rcv_finish net/ipv4/ip_input.c:449 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] ip_rcv+0x46f/0x760 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core net/core/dev.c:5534 [inline]
__netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5648 netif_receive_skb_internal net/core/dev.c:5734 [inline] netif_receive_skb+0x58/0x660 net/core/dev.c:5793 tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1556 tun_get_user+0x53b9/0x66e0 drivers/net/tun.c:2009 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2055 call_write_iter include/linux/fs.h:2087 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb6b/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b Uninit was created at: __alloc_pages+0x9a6/0xe00 mm/page_alloc.c:4590 alloc_pages_mpol+0x62b/0x9d0 mm/mempolicy.c:2133 alloc_pages+0x1be/0x1e0 mm/mempolicy.c:2204 skb_page_frag_refill+0x2bf/0x7c0 net/core/sock.c:2909 tun_build_skb drivers/net/tun.c:1686 [inline] tun_get_user+0xe0a/0x66e0 drivers/net/tun.c:1826 tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2055 call_write_iter include/linux/fs.h:2087 [inline] new_sync_write fs/read_write.c:497 [inline] vfs_write+0xb6b/0x1520 fs/read_write.c:590 ksys_write+0x20f/0x4c0 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x93/0xd0 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b CVE-2024-27020 In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_expr_type_get() nft_unregister_expr() can concurrent with __nft_expr_type_get(), and there is not any protection when iterate over nf_tables_expressions list in __nft_expr_type_get().
Therefore, there is potential data-race of nf_tables_expressions list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_expressions list in __nft_expr_type_get(), and use rcu_read_lock() in the caller nft_expr_type_get() to protect the entire type query process.
CVE-2024-38570 In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix potential glock use-after-free on unmount When a DLM lockspace is released and there ares still locks in that lockspace, DLM will unlock those locks automatically. Commit fb6791d100d1b started exploiting this behavior to speed up filesystem unmount: gfs2 would simply free glocks it didn't want to unlock and then release the lockspace.
This didn't take the bast callbacks for asynchronous lock contention notifications into account, which remain active until until a lock is unlocked or its lockspace is released. To prevent those callbacks from accessing deallocated objects, put the glocks that should not be unlocked on the sd_dead_glocks list, release the lockspace, and only then free those glocks. As an additional measure, ignore unexpected ast and bast callbacks if the receiving glock is dead.
CVE-2024-26923 In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix garbage collector racing against connect() Garbage collector does not take into account the risk of embryo getting enqueued during the garbage collection. If such embryo has a peer that carries SCM_RIGHTS, two consecutive passes of scan_children() may see a different set of children. Leading to an incorrectly elevated inflight count, and then a dangling pointer within the gc_inflight_list. sockets are AF_UNIX/SOCK_STREAM S is an unconnected socket L is a listening in-flight socket bound to addr, not in fdtable V's fd will be passed via sendmsg(), gets inflight count bumped connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc()
---------------- ------------------------- ----------- NS = unix_create1() skb1 = sock_wmalloc(NS) L = unix_find_other(addr) unix_state_lock(L) unix_peer(S) = NS // V count=1 inflight=0 NS = unix_peer(S) skb2 = sock_alloc() skb_queue_tail(NS, skb2[V]) // V became in-flight // V count=2 inflight=1 close(V) // V count=1 inflight=1 // GC candidate condition met for u in gc_inflight_list: if (total_refs == inflight_refs) add u to gc_candidates // gc_candidates={L, V} for u in gc_candidates: scan_children(u, dec_inflight) // embryo (skb1) was not // reachable from L yet, so V's // inflight remains unchanged
__skb_queue_tail(L, skb1) unix_state_unlock(L) for u in gc_candidates: if (u.inflight) scan_children(u, inc_inflight_move_tail) // V count=1 inflight=2 (!) If there is a GC-candidate listening socket, lock/unlock its state. This makes GC wait until the end of any ongoing connect() to that socket. After flipping the lock, a possibly SCM-laden embryo is already enqueued. And if there is another embryo coming, it can not possibly carry SCM_RIGHTS. At this point, unix_inflight() can not happen because unix_gc_lock is already taken. Inflight graph remains unaffected.
CVE-2023-52469 In the Linux kernel, the following vulnerability has been resolved: drivers/amd/pm: fix a use-after-free in kv_parse_power_table When ps allocated by kzalloc equals to NULL, kv_parse_power_table frees adev->pm.dpm.ps that allocated before. However, after the control flow goes through the following call chains: kv_parse_power_table |-> kv_dpm_init |-> kv_dpm_sw_init |-> kv_dpm_fini The adev->pm.dpm.ps is used in the for loop of kv_dpm_fini after its first free in kv_parse_power_table and causes a use-after-free bug.
CVE-2023-52340 The IPv6 implementation in the Linux kernel before 6.3 has a net/ipv6/route.c max_size threshold that can be consumed easily, e.g., leading to a denial of service (network is unreachable errors) when IPv6 packets are sent in a loop via a raw socket.
CVE-2024-42228 In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Using uninitialized value
*size when calling amdgpu_vce_cs_reloc Initialize the size before calling amdgpu_vce_cs_reloc, such as case 0x03000001. V2: To really improve the handling we would actually need to have a separate value of 0xffffffff.(Christian) CVE-2024-26934 In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix deadlock in usb_deauthorize_interface() Among the attribute file callback routines in drivers/usb/core/sysfs.c, the interface_authorized_store() function is the only one which acquires a device lock on an ancestor device:
It calls usb_deauthorize_interface(), which locks the interface's parent USB device. The will lead to deadlock if another process already owns that lock and tries to remove the interface, whether through a configuration change or because the device has been disconnected. As part of the removal procedure, device_del() waits for all ongoing sysfs attribute callbacks to complete. But usb_deauthorize_interface() can't complete until the device lock has been released, and the lock won't be released until the removal has finished. The mechanism provided by sysfs to prevent this kind of deadlock is to use the sysfs_break_active_protection() function, which tells sysfs not to wait for the attribute callback.
Reported-and-tested by: Yue Sun Reported by: xingwei lee CVE-2024-23307Integer Overflow or Wraparound vulnerability in Linux Linux kernel kernel on Linux, x86, ARM (md, raid, raid5 modules) allows Forced Integer Overflow.
CVE-2024-23307 Integer Overflow or Wraparound vulnerability in Linux Linux kernel kernel on Linux, x86, ARM (md, raid, raid5 modules) allows Forced Integer Overflow.
CVE-2024-36960 In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Fix invalid reads in fence signaled events Correctly set the length of the drm_event to the size of the structure that's actually used. The length of the drm_event was set to the parent structure instead of to the drm_vmw_event_fence which is supposed to be read. drm_read uses the length parameter to copy the event to the user space thus resuling in oob reads.
CVE-2024-26668 In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_limit: reject configurations that cause integer overflow Reject bogus configs where internal token counter wraps around.
This only occurs with very very large requests, such as 17gbyte/s. Its better to reject this rather than having incorrect ratelimit.
CVE-2024-39494 In the Linux kernel, the following vulnerability has been resolved: ima: Fix use-after-free on a dentry's dname.name ->d_name.name can change on rename and the earlier value can be freed; there are conditions sufficient to stabilize it (->d_lock on dentry, ->d_lock on its parent, ->i_rwsem exclusive on the parent's inode, rename_lock), but none of those are met at any of the sites. Take a stable snapshot of the name instead.

Tenable 已直接從 MiracleLinux 安全性公告擷取前置描述區塊。

請注意,Nessus 並未測試這些問題,而是僅依據應用程式自我報告的版本號碼作出判斷。

解決方案

更新受影響的套件。

另請參閱

https://tsn.miraclelinux.com/en/node/20004

Plugin 詳細資訊

嚴重性: High

ID: 292981

檔案名稱: miracle_linux_AXSA-2024-8820.nasl

版本: 1.1

類型: local

已發布: 2026/1/20

已更新: 2026/1/20

支援的感應器: Nessus Agent, Nessus

風險資訊

VPR

風險因素: High

分數: 7.4

Vendor

Vendor Severity: High

CVSS v2

風險因素: Medium

基本分數: 6.8

時間性分數: 5

媒介: CVSS2#AV:L/AC:L/Au:S/C:C/I:C/A:C

CVSS 評分資料來源: CVE-2024-39494

CVSS v3

風險因素: High

基本分數: 7.8

時間性分數: 6.8

媒介: CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

時間媒介: CVSS:3.0/E:U/RL:O/RC:C

弱點資訊

CPE: p-cpe:/a:miracle:linux:kernel-debug, p-cpe:/a:miracle:linux:kernel, p-cpe:/a:miracle:linux:kernel-abi-whitelists, cpe:/o:miracle:linux:7, p-cpe:/a:miracle:linux:kernel-devel, p-cpe:/a:miracle:linux:kernel-tools-libs, p-cpe:/a:miracle:linux:perf, p-cpe:/a:miracle:linux:kernel-debug-devel, p-cpe:/a:miracle:linux:kernel-tools, p-cpe:/a:miracle:linux:bpftool, p-cpe:/a:miracle:linux:kernel-headers, p-cpe:/a:miracle:linux:python-perf

必要的 KB 項目: Host/local_checks_enabled, Host/MiracleLinux/release, Host/MiracleLinux/rpm-list, Host/cpu

可輕鬆利用: No known exploits are available

修補程式發佈日期: 2024/9/24

弱點發布日期: 2021/9/4

參考資訊

CVE: CVE-2021-47383, CVE-2023-52340, CVE-2023-52469, CVE-2024-0775, CVE-2024-23307, CVE-2024-26668, CVE-2024-26855, CVE-2024-26882, CVE-2024-26923, CVE-2024-26934, CVE-2024-27020, CVE-2024-36960, CVE-2024-38570, CVE-2024-39494, CVE-2024-42228